WinAppDbg Documentation

Release 1.4

Mario Vilas

August 22, 2010

CONTENTS

1 Table of Contents 3
.1 Getting started e e e e e e e e e e e 3
1.2 Tools . . . o o e e e e e e e e 5
1.3 Programming guide e e e e e e e e e e e e 8
1.4 Building your own distribution packages L oL 47

WinAppDbg Documentation, Release 1.4

The WinAppDbg python module allows developers to quickly code instrumentation scripts in Python under a Win-
dows environment.

It uses ctypes to wrap many Win32 API calls related to debugging, and provides a powerful abstraction layer to
manipulate threads, libraries and processes, attach your script as a debugger, trace execution, hook API calls, handle
events in your debugee and set breakpoints of different kinds (code, hardware and memory). Additionally it has no
native code at all, making it easier to maintain or modify than other debuggers on Windows.

The intended audience are QA engineers and software security auditors wishing to test or fuzz Windows applications
with quickly coded Python scripts. Several ready to use utilities are shipped and can be used for this purposes.

Current features also include disassembling x86 native code (using the diStorm disassembler), debugging multiple
processes simultaneously and produce a detailed log of application crashes, useful for fuzzing and automated testing.

CONTENTS 1

http://msdn.microsoft.com/en-us/library/ms679304(VS.85).aspx
http://ragestorm.net/distorm/

WinAppDbg Documentation, Release 1.4

2 CONTENTS

CHAPTER
ONE

TABLE OF CONTENTS

1.1 Getting started

This is what you need to know to download, install and begin to use WinAppDbg:

1.1.1 Download

The current version is 1.4. You can choose any of the following files (if in doubt, pick the first):

Windows (32 bits)

* winappdbg-1.4.win32.exe

* winappdbg-1.4.win32.msi
Windows (64 bits)

* winappdbg-1.4.win-amd64.exe

e winappdbg-1.4.win-amd64.msi
Source code

* winappdbg-1.4.zip
* winappdbg-1.4.tar.bz2

The Sourceforge project’s download page contains all versions. You can also get the bleeding-edge version as a source
code tarball from the subversion repository.

1.1.2 Install

Simply run the Windows installer package and follow the wizard.
Alternatively, if you prefer using EasylInstall (setuptools), type the following at the command prompt

easy_install winappdbg

http://sourceforge.net/projects/winappdbg/files/WinAppDbg/1.4/winappdbg-1.4.win32.exe/download
http://sourceforge.net/projects/winappdbg/files/WinAppDbg/1.4/winappdbg-1.4.win32.msi/download
http://sourceforge.net/projects/winappdbg/files/WinAppDbg/1.4/winappdbg-1.4.win-amd64.exe/download
http://sourceforge.net/projects/winappdbg/files/WinAppDbg/1.4/winappdbg-1.4.win-amd64.msi/download
http://sourceforge.net/projects/winappdbg/files/WinAppDbg/1.4/winappdbg-1.4.zip/download
http://sourceforge.net/projects/winappdbg/files/WinAppDbg/1.4/winappdbg-1.4.tar.bz2/download
http://sourceforge.net/projects/winappdbg/files/WinAppDbg/
http://winappdbg.svn.sourceforge.net/viewvc/winappdbg/trunk.tar.gz?view=tar
http://pypi.python.org/pypi/setuptools

WinAppDbg Documentation, Release 1.4

And WinAppDbg will be automatically downloaded and installed from the PyPI repository.

If you prefer to install directly from the sources package, extract it to any temporary folder and run the following
command

setup.py install

1.1.3 Dependencies

Naturally you need the Python interpreter. There are two basic flavors, just pick your favorite:
* The official Python interpreter (free, open source). This is the preferred choice.

* ActiveState ActivePython (free, closed source). It should work but in 64 bit Windows the ctypes module is
missing and you’ll have to install it manually.

If you’re still using Python 2.4 you’ll need to install some additional modules:
¢ The ctypes module is needed to interface with the Win32 API.

* The SQLite python bindings can be used with the crash logger tool to store the crash information in an SQLite
database file.

The diStorm <http://code.google.com/p/distorm/> disassembler is also required. You can download the official Python
wrappers (32 bits only, manual install) or our own installers. Bear in mind that the official build is more likely to stay
up to date.

Note: If you don’t install diStorm, all classes and methods of the debugger not related to dissassembling will still
work correctly.

Optional packages
The following packages provide extra features and performance improvements, but they’re not required to use WinAp-
pDbg:

¢ The PyODBC module gives the crach logger tool the ability to connect to MSSQL databases.

* The Python specializing compiler, Psyco. WinAppDbg will experience a performance gain just by installing it,
no additional steps are needed. You can download it from here.

* PyReadline is useful when using the console tools shipped with WinAppDbg, but they’ll work without it. Basi-
cally what it does is provide autocomplete and history for console applications.

* The py2exe package. You can use it to generate standalone binaries for any tools made with WinAppDbg. See
the instructions on how to use the Makefile.

1.1.4 Support

This package has been tested under Windows XP and above (both 32 and 64 bits) using Python 2.6. It was loosely
tested under Windows 2000, Wine and ReactOS, and some bugs are to be expected in these platforms (mainly due to
missing APIs).

If you find a bug or have a feature suggestion, don’t hesitate to send an email to the
[https://lists.sourceforge.net/lists/listinfo/winappdbg-users winappdbg-users] mailing list. ~Both comments and
complaints are welcome! :)

The following tables show which Python interpreters, operating systems and processor architectures are currently
supported. Full means all features are fully functional. Partial means some features may be broken and/or untested.

4 Chapter 1. Table of Contents

http://pypi.python.org/pypi/winappdbg/1.3
http://www.python.org/download/
http://www.activestate.com/store/activepython/download/
http://python.net/crew/theller/ctypes/
http://sourceforge.net/projects/pysqlite/
http://code.google.com/p/distorm/downloads/detail?name=distorm.zip&can=2&q=
http://winappdbg.sourceforge.net/distorm3/
http://code.google.com/p/pyodbc/
http://psyco.sourceforge.net/
http://psyco.sourceforge.net/download.html
http://ipython.scipy.org/moin/PyReadline/Intro
http://www.py2exe.org/
https://lists.sourceforge.net/lists/listinfo/winappdbg-users

WinAppDbg Documentation, Release 1.4

Experimental means there is a subversion branch with at least partial support, but hasn’t been merged to trunk yet.
Untested means that though no testing was performed it should probably work.

 Python interpreters

Python 2.4 | full
Python 2.5 | full
Python 2.6 | full
Python 2.7 | full
Python 3.x | experimental | (see this branch)
¢ Operating systems
Windows XP full
Windows Vista full
Windows 7 full
Windows Server 2003 full
Windows Server 2003 R2 | full
Windows Server 2008 full
Windows Server 2008 R2 | full
Windows 2000 and older | partial (some Win32 APIs didn’t exist yet)
ReactOS untested | (probably similar to Windows 2000)
Linux (using Wine) untested | (reported to work on Ubuntu)

¢ Architectures

compatible

compatible

Intel x86 (32 bits) and
Intel x86_x64 (64 bits) and

Intel IA64 (Itanium)

full

partial (function hooks are not implemented)

experi- (no actual Itanium system to test it on, help is
mental needed!)

1.1.5 License

This package is released under the BSD license, so as a user you are entitled to create derivative work and redistribute
it if you wish. A makefile is provided to automatically generate the source distribution package and the Windows
installer, and can also generate the documentation for all the modules using Epydoc. The sources to this documentation

are also provided and can be compiled with Sphinx.

1.2 Tools

The WinAppDbg package comes with a collection of tools useful for common tasks when debugging or fuzzing a
program. The most important tool, the Crash logger, attaches to any number of target processes and collects crash
dump information in a SQLite database. It can also apply heuristics to discard multiple occurrences of the same crash.

The source code of these tools can also be read for more examples on programming using WinAppDbg.

The following tools are shipped with the WinAppDbg package:

1.2.1 Crash logger

* crash_logger.py:

1.2. Tools

http://winappdbg.svn.sourceforge.net/viewvc/winappdbg/branches/compat
http://en.wikipedia.org/wiki/BSD_license
http://epydoc.sourceforge.net/
http://sphinx.pocoo.org/

WinAppDbg Documentation, Release 1.4

crash_logger.py

—VC

. swmizchcrasher.exe 1

[14:27:56.8958]1 Crazh logger started,. Wed Apr 22 14:29:56 2089
[14:-29:57.88811 pid 4868 tid 2284: Process C:xDocuments and SettingssMario Uilas
~Dezktopswinappdbgsmiscuwcrazher.exe started,. entry point at BxBBE481220

[14:29:57.86891 1]
[14:29:57.81111]
YcBBBE8H
[14:29:57.81111]
c1B86868
[14:29:57.81211]
[14:29:57.81511
etB@x1326

Registers:

pid 4868
pid 4868

pid 4868

pid 4868
pid 4868

tid 2284: Loaded
tid 2284: Loaded

tid 2284: Loaded

tid 2284: System
tid 2284: Access

ntdll.dll at Bx7c?08000
CasWINDOWS~sustem32skerneld2.dll at Bx

CasWINDOWSssustem32 msvert .dll at Bx??

breakpoint hit
violation <(first chance) at crasher.ex

eax=HA0HBAARE ebhx=A0004000 ecx=ffffffff edx=-BBBOBA31 esi-00000000 =di-BHB0GBOH

eip=A481326 esp=0022fefB ebp=BB22ff78 iopl-=8
ss=0023 d==8A023

cz=H@1h

Code disassembly:

BxA0481316 |
Bx0648131°7
Bx8048131c
Bx80481323
Bx80481326
Bx00461 329
Bx8048132e
B:80481 335

Stack pointers:
[esp+Bx@@]1 —>
[ezsp+BxB4]1 —>
[esp+Bx@8]1 —>
[esp+Bx@c] —>
[esp+lx14] —>
[esp+@x181 —>
[esp+tlxic] —>
[esp+Bx24] —>
[esp+Bx3@]1 —>
[esp+@x32]1 >
[esp+Bx38]1 —>

Stack dump:

e
£t
8@
el
ce
74
i4
ad

-
=

[e uen)
o R

e?
c?45 f4

e?
c'?78424

e hBBHBAAE
5151515151015]5)
8h45 f4
cbBB 61
d?806800
67304880

es=A023 f==-0038

46 inc esi
Jmp
mou
mou
mow
Jmp
mou
db Bxed

no up ei pl =zr na pe nc

gs=B088 ef 1=-0800182 46

Bx4681 487

dvord [ebp—Bxcl, Bx@
eax.
hyte [eax], Bx6l
Bx46814@7

dvord [espl, Bx483867

[ebp—Hxc]

J-ho..w_+,
. smiszcwcrasher.
u.m.e.n.t.=s...a.

. p:.l.
Y ¥ D

Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

Attaches as a debugger or starts a new process for debugging. Whenever an interesting debug event
occurs (i.e. a bug is found) it can save the info to a database and/or log it through standard output.

Some simple heuristics can be used to try to determine whether two crashes were caused by the same
bug, in order to discard duplicates. It can also try to guess how exploitable would the found crashes
be, using similar heuristics to those of !exploitable.

Additional features allow setting breakpoints at the target process(es), attaching to spawned child
processes, restarting crashed processes, and running a custom command when a crash is found.

* crash_report.py:
Shows the contents of the crashes database file to standard output.
* crash_report_mssqgl.py:

Shows the contents of the crashes MS SQL database to standard output.

1.2.2 Process tools

These tools were inspired by the ptools suite by Nicolds Economou.
* pinject.py:
Forces a process to load a DLL library of your choice.
* plist.py:
Shows a list of all currently running processes.
* pmap.py:
Shows a map of a process memory space.
e pfind.py:
Finds the given text, binary data, binary pattern or regular expression in a process memory space.
* pread.py:
Reads the memory contents of a process to standard output or any file of your choice.
* pwrite.py:
Writes to the memory of a process from the command line or any file of your choice.
e pkill.py:
Terminates a process or a batch of processes.
* ptrace.py:

Traces execution of a process. It supports three methods: single stepping, single stepping on
branches, and native syscall hooking.

* pdebug.py:

Extremely simple command line debugger. It’s main feature is being written entirely in Python, so
it’s easy to modify or write plugins for it.

1.2. Tools 7

http://www.codeplex.com/msecdbg
http://tinyurl.com/nicolaseconomou

WinAppDbg Documentation, Release 1.4

1.2.3 Miscellaneous

* SelectMyParent.py:

Allows you to create a new process specifying any other process as it’s parent, and inherit it’s handles.
See the blog post by Didier Stevens for the original C version.

* hexdump.py:

Shows an hexadecimal dump of the contents of a file.

1.3 Programming guide

This guide will show you through the most commonly used classes and methods of the WinAppDbg module, and
provide some examples of use for each one. The goal is to give you a bird’s eye perspective on what the library can do
and how, without having to go through the reference material.

1.3.1 Instrumentation
You can implement process instrumentation in your Python scripts by using the provided set of classes: System,
Process, Thread and Module. Each one acts as a snapshot of the processes, threads and DLL modules in the system.

A System object is a snapshot of all running processes. It contains Process objects, which in turn are snapshots of
processes. A Process object contains Thread and Module objects.

Note: You don’t need to be attached as a debugger for these classes to work.

The System class

The System class basically behaves like a snapshot of the running processes. It can enumerate processes and perform
operations on a batch of processes.

Example #1: enumerating running processes

Download

from winappdbg import System

Request debugging privileges for the current process
This is needed to get some information from services
(Try commenting out this line to see what happens!)
System.request_debug_privileges|()

Create a system snaphot
system = System()

Now we can enumerate the running processes
for process in system:

)

print " :\t%s" % (process.get_pid(), process.get_filename())

8 Chapter 1. Table of Contents

http://blog.didierstevens.com/2009/11/22/quickpost-selectmyparent-or-playing-with-the-windows-process-tree/
http://winappdbg.sourceforge.net/doc/v1.4/

WinAppDbg Documentation, Release 1.4

Example #2: starting a new process

Download

from winappdbg import System
import sys

Instance a System object
system = System()

Get the target application
command_line = system.argv_to_cmdline(sys.argv[1 :])

Start a new process
system.start_process(command_line) # see the docs for more options

The Process class
The Process class lets you manipulate any process in the system. You can get a Process instance by enumerating a
System snapshot, or instancing one directly by providing the process ID.

A Process object allows you to manipulate the process memory (read, write, allocate and free operations), create new
threads in the process, and more. It also acts as a snapshot of it’s threads and DLL modules.

Example #3: enumerating threads and DLL modules in a process

Download

from winappdbg import Process, HexDump
def print_threads_and_modules(pid):

Instance a Process object
process = Process(pid)

[}

print "Process %d" % process.get_pid()

Now we can enumerate the threads in the process...
print "Threads:"
for thread in process.iter_threads() :

print "\t%d" % thread.get_tid()

...and the modules in the process
print "Modules:"

for module in process.iter_modules() :
print "\t%s\t%s" % (HexDump.address(module.get_base()), module.get_filename ()

Example #4: Killing a process

Download

from winappdbg import Process

def process_kill(pid):

1.3. Programming guide 9

)

WinAppDbg Documentation, Release 1.4

Instance a Process object
process = Process(pid)

Kill the process
process.kill ()

Example #5: reading the process memory

Download

from winappdbg import Process
def process_read(pid, address, length):

Instance a Process object
process = Process(pid)

Read the process memory
data = process.read(address, length)

Return a Python string with the memory contents
return data

Example #6: loading a DLL into the process

Download

from winappdbg import Process
def load_dll(pid, filename):

Instance a Process object
process = Process(pid)

Load the DLL library in the process
process.inject_dll(filename)

Example #7: getting the process memory map

Download

from winappdbg import win32, Process, HexDump
def print_memory_map(pid):

Instance a Process object
process = Process(pid)

Get the process memory map
memoryMap = process.get_memory_map ()

Now you could do this...
#

10 Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

##

from winappdbg import CrashDump
print CrashDump.dump_memory_map (memoryMap),

..but let’s do it the hard way:

For each memory block in the map...
print "Address \tSize \tState \tAccess \tType"
for mbi in memoryMap:

Address and size of memory block
BaseAddress = HexDump.address (mbi.BaseAddress)
RegionSize = HexDump.address (mbi.RegionSize)

State (free or allocated)

if mbi.State == win32.MEM_RESERVE:
State = "Reserved "

elif mbi.State == win32.MEM_COMMIT:
State = "Commited "

elif mbi.State == win32.MEM FREE:
State = "Free "

else:
State = "Unknown "

Page protection bits (R/W/X/G)

if mbi.State != win32.MEM_COMMIT:
Protect =" "

else:

Protect = "0x%.08x" % mbi.Protect
if mbi.Protect & win32.PAGE_NOACCESS:
Protect = "—— "

elif mbi.Protect & win32.PAGE_READONLY:
Protect = "R—— "

elif mbi.Protect & win32.PAGE_READWRITE:
Protect = "RW- "

elif mbi.Protect & win32.PAGE_WRITECOPY:
Protect = "RC- "

elif mbi.Protect & win32.PAGE_EXECUTE:
Protect = "-——-X "

elif mbi.Protect & win32.PAGE_EXECUTE_READ:
Protect = "R-X "

elif mbi.Protect & win32.PAGE_EXECUTE_READWRITE:
Protect = "RWX "

elif mbi.Protect & win32.PAGE_EXECUTE_WRITECOPY:
Protect = "RCX "

else:
Protect = "??22 "

if mbi.Protect & win32.PAGE_GUARD:
Protect += "G"

else:
Protect += "-"

if mbi.Protect & win32.PAGE_NOCACHE:
Protect += "N"

else:
Protect += "-"

if mbi.Protect & win32.PAGE_WRITECOMBINE:
Protect += "W"

else:
Protect += "-"

1.3. Programming guide

11

WinAppDbg Documentation, Release 1.4

Protect += " "

Type (file mapping, executable image, or private memory)

if mbi.Type == win32.MEM_IMAGE:
Type = "Image "

elif mpi.Type == win32.MEM_MAPPED:
Type = "Mapped "

elif mbi.Type == win32.MEM_PRIVATE:
Type = "Private "

elif mbi.Type ==
Type = "Free "

else:
Type = "Unknown "

Print the memory block information
fmt = "2s\tés\tes\tes\tss"

o

print fmt % (BaseAddress, RegionSize, State, Protect, Type)

The Thread class

A Thread object lets you manipulate any thread in any process in the system. You can get a Thread instance by

enumerating a Process snapshot, or instancing one manually by providing the thread ID.

You can manipulate the thread context (read and write to it’s registers), perform typical debugger operations (getting

stack traces, etc), suspend and resume execution, and more.

Example #8: freeze all threads in a process

Download

from winappdbg import Process, System
def freeze_threads(pid):

Request debug privileges
System.request_debug_privileges ()

Instance a Process object
process = Process(pid)

This would also do the trick...
#

process.suspend()

#

...but let’s do it the hard way:

Lookup the threads in the process
process.scan_threads ()

For each thread in the process...
for thread in process:

Suspend the thread execution
thread. suspend ()

def unfreeze_threads(pid):

12 Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

Request debug privileges
System.request_debug_privileges ()

Instance a Process object
process = Process(pid)

This would also do the trick...
#

process.resume ()

#

...but let’s do it the hard way:

Lookup the threads in the process
process.scan_threads ()

For each thread in the process...
for thread in process:

Resume the thread execution
thread.resume ()

Example #9: print a thread’s context

Download

from winappdbg import Thread, CrashDump, System
def print_thread_context (tid):

Request debug privileges
System.request_debug_privileges()

Instance a Thread object
thread = Thread(tid)

Suspend the thread execution
thread.suspend ()

Get the thread context
try:
context = thread.get_context ()

Resume the thread execution
finally:

thread.resume ()
Display the thread context

print
print CrashDump.dump_registers(context),

Example #10: print a thread’s code disassembly

Download

1.3. Programming guide 13

WinAppDbg Documentation, Release 1.4

from winappdbg import Thread, CrashDump, System
def print_thread_disassembly(tid):

Request debug privileges
System.request_debug_privileges ()

Instance a Thread object
thread = Thread(tid)

Suspend the thread execution
thread.suspend ()

Get the thread’s currently running code
try:

eip = thread.get_pc()

code = thread.disassemble_around(eip)

You can also do this:
code = thread.disassemble_around_pc ()

Or even this:
process = thread.get_process ()
code = process.disassemble_around(eip)

Resume the thread execution
finally:

thread.resume ()
Display the thread context

print
print CrashDump.dump_code (code, eip),

The Module class

A Module object lets you manipulate any thread in any process in the system. You can get a Module instance by
enumerating a Process snapshot. Module objects can be used to resolve the addresses of exported functions in the
process address space.

Example #11: resolve an API function in a process

Download

from winappdbg import Process, System
def print_api_address(pid, modName, procName):

Request debug privileges
System.request_debug_privileges ()

Instance a Process object
process = Process(pid)

Lookup it’s modules
process.scan_modules ()

14 Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

Get the module
module = process.get_module_by_name (modName)
if not module:
print "Module not found: $s" % modName
return

Resolve the requested API function address
address = module.resolve(procName)

Print the address
if address:
print "2s!$s == 0x¢.08x" % (modName, procName, address)
else:
print "Could not resolve %s in module %s" % (procName, modName)

1.3.2 Debugging

Debugging operations are performed by the Debug class. You can receive notification of debugging events by passing
a custom event handler to the Debug object when creating it - each event is represented by an Event object. Custom
event handlers can also be subclasses of the EventHandler class.

Debug objects can also set breakpoints, watches and hooks and support the use of labels.

The Debug class

A Debug object provides methods to launch new processes, attach to and detach from existing processes, and manage
breakpoints. It also contains a System snapshot to instrument debugged processes - this snapshot is updated automati-
cally for processes being debugged.

Example #1: starting a new process and waiting for it to finish

Download

from winappdbg import Debug
import sys

Instance a Debug object
debug = Debug ()
try:

Start a new process for debugging
debug.execv(sys.argv[1 :])

Wait for the debugee to finish
debug.loop ()

Stop the debugger
finally:
debug.stop ()

1.3. Programming guide 15

WinAppDbg Documentation, Release 1.4

Example #2: attaching to a process and waiting for it to finish

Download

from winappdbg import Debug
import sys

Get the process ID from the command line
pid = int (sys.argv[1l])

Instance a Debug object
debug = Debug ()
try:

Attach to a running process
debug.attach(pid)

Wait for the debugee to finish
debug.loop ()

Stop the debugger
finally:
debug.stop ()

Example #3: attaching to a process by filename

Download

from winappdbg import Debug
import sys

Get the process filename from the command line
filename = sys.argv[l]

Instance a Debug object
debug = Debug ()
try:

Lookup the currently running processes
debug.system.scan_processes ()

For all processes that match the requested filename...
for (process, name) in debug.system.find_processes_by_filename(filename):
print process.get_pid(), name

Attach to the process
debug.attach(process.get_pid())

Wait for all the debugees to finish
debug. loop ()

Stop the debugger
finally:
debug.stop ()

16 Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

Example #4: killing a process by attaching to it

Download

from winappdbg import Debug

import sys
import thread

Get the process ID from the command line
pid = int (sys.argv[1l])

Instance a Debug object, set the kill on exit property to True
debug = Debug(bKillOnExit = True)

Attach to a running process
debug.attach(pid)

Exit the current thread, killing the attached process
thread.exit ()

The Event class

So far we have seen how to attach to or start processes. But a debugger also needs to react to events that happen in the
debugee, and this is done by passing a callback function as the eventHandler parameter when instancing the Debug
object. This callback, when called, will receive as parameter an Event object which describes the event and contains
a reference to the Debug object itself.

Example #5: handling debug events

Download

from winappdbg import Debug, HexDump
def my_event_handler (event):

Get the event name
name = event.get_event_name ()

Get the event code
code = event.get_event_code ()

Get the process ID where the event occured
pid = event.get_pid()

Get the thread ID where the event occured
tid = event.get_tid()

Get the value of EIP at the thread
pc = event.get_thread() .get_pc()

Show something to the user

format_string = "$%s (%s) at address %s, process %d, thread %d
message = format_string % (name, HexDump.integer (code), HexDump.address (pc), pid,
print message

1.3. Programming guide 17

tid)

WinAppDbg Documentation, Release 1.4

def simple_debugger (argv):

Instance a Debug object, passing it the event handler callback
debug = Debug(my_event_handler)
try:

Start a new process for debugging
debug.execv(argv)

Wait for the debugee to finish
debug. loop ()

Stop the debugger
finally:
debug.stop ()

The EventHandler class
Using a callback function is not very flexible when your code is too large. For that reason, the EventHandler class is
provided.

Instead of a function, you can define a subclass of EventHandler where each method of your class should match an
event - for example, to receive notification on new DLL libraries being loaded, define the load_dIl method in your
class. If you don’t want to receive notifications on a specific event, simply don’t define the method in your class.

These are the most important event notification methods:

Notifi- What does it mean? When is it received

cation

name

cre- The debugger has When attaching to a process, when starting a new process for debugging,

ate_process attached to a new or when the debugee starts a new process and the bFollow flag was set to
process. True.

exit_processA debugee process has When a process terminates by itself or when the Process.kill method is
finished executing. called.

cre- A debugee process has When the process creates a new thread or when the

ate_thread started a new thread. _Process.start_thread_ method is called.

exit_thread A thread in a debugee When a thread terminates by itself or when the Thread.kill method is
process has finished called.
executing.

load_dll | A module in a debugee When a process loads a DLL module by itself or when the
process was loaded. Process.inject_dll method is called.

un- A module in a debugee When a process unloads a DLL module by itself.

load_dll process was unloaded.

excep- An exception was raised | When a hardware fault is triggered or when the process calls

tion by the debugee. RaiseException().

The event handler can also receive notifications for specific exceptions as a different event. When you define the
method for that exception, it takes precedence over the more generic exception method.

These are the most important exception notification methods:

18 Chapter 1. Table of Contents

http://msdn.microsoft.com/en-us/library/ms680552(VS.85).aspx

WinAppDbg Documentation, Release 1.4

Notifi- What does it mean? When is it received
cation
name
break- A breakpoint exception | When a hardware fault is triggered by the int3 opcode, when the process
point was raised by the calls DebugBreak(), or when a code breakpoint set by your program is
debugee. triggered.
sin- A single step exception | When a hardware fault is triggered by the trap flag or the icebp opcode, or
gle_step | was raised by the when a hardware breakpoint set by your program is triggered.
debugee.
guard_pageA guard page exception | When a guard page is hit or when a page breakpoint set by your program
was raised by the is triggered.
debugee.

In addition to all this, the EventHandler class provides a simple method for API hooking: the apiHooks class property.
This property is a dictionary of tuples, specifying which API calls to hook on what DLL libraries, and how many
parameter does each call take. That’s it! The EventHandler class will automatically hooks this APIs for you when
the corresponding library is loaded, and a method of your subclass will be called when entering and leaving the API
function.

Example #6: tracing execution

Download

from winappdbg import Debug, EventHandler, HexDump, CrashDump, win32
class MyEventHandler (EventHandler):
Create process events go here
def create_process(self, event):
Start tracing the main thread
event .debug.start_tracing(event.get_tid())
Create thread events go here
def create_thread(self, event):
Start tracing the new thread
event .debug.start_tracing(event.get_tid())
Single step events go here
def single_step(self, event):

Show the user where we’re running
thread = event.get_thread()

pc = thread.get_pc()
code = thread.disassemble(pc, 0x10) [O0]
print " : " % (HexDump.address(code[0]), code[2].lower ())

def simple_debugger (argv):

Instance a Debug object, passing it the MyEventHandler instance

1.3. Programming guide 19

http://en.wikipedia.org/wiki/INT_(x86_instruction)#INT_3
http://msdn.microsoft.com/en-us/library/ms679297(VS.85).aspx
http://maven.smith.edu/~thiebaut/ArtOfAssembly/CH17/CH17-2.html#HEADING2-10
http://www.rcollins.org/secrets/opcodes/ICEBP.html
http://msdn.microsoft.com/en-us/library/aa366549(VS.85).aspx

WinAppDbg Documentation, Release 1.4

debug = Debug(MyEventHandler ())
try:

Start a new process for debugging
debug.execv(argv)

Wait for the debugee to finish
debug. loop ()

Stop the debugger

finally:
debug.stop ()

Example #7: intercepting API calls

Download

class MyEventHandler (EventHandler):
Here we set which API calls we want to intercept
apiHooks = {

Hooks for the kernel32 library
"kernel32.dll’ : [

Function Parameters
("CreateFileA’ , 7),
("CreateFileW’ , 7),

i

Hooks for the advapi32 library
"advapi32.dll” : [

Function Parameters
("RegCreateKeyExA’ , 9),
("RegCreateKeyExW’ , 9),

1,

Now we can simply define a method for each hooked API.
Methods beginning with "pre_ " are called when entering the API,
and methods beginning with "post_" when returning from the APT.

def pre_CreateFileA(self, event, ra, lpFileName, dwDesiredAccess,
dwShareMode, lpSecurityAttributes, dwCreationDisposition,
dwFlagsAndAttributes, hTemplateFile):

self.__print_opening_ansi(event, "file", lpFileName)
def pre_CreateFileW(self, event, ra, lpFileName, dwDesiredAccess,
dwShareMode, lpSecurityAttributes, dwCreationDisposition,
dwFlagsAndAttributes, hTemplateFile):

self.__print_opening_unicode(event, "file", lpFileName)

def pre_RegCreateKeyExA(self, event, ra, hKey, lpSubKey, Reserved,

20 Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

lpClass, dwOptions, samDesired,
lpSecurityAttributes, phkResult,
lpdwDisposition):

self.__print_opening_ansi(event, "key", lpSubKey)
def pre_RegCreateKeyExW(self, event, ra, hKey, lpSubKey, Reserved,
lpClass, dwOptions, samDesired,
lpSecurityAttributes, phkResult,
lpdwDisposition):
self.__print_opening_unicode(event, "key", lpSubKey)
def post_CreateFileA(self, event, retval):

self.__print_success(event, retval)

def post_CreateFileW(self, event, retval):
self.__print_success(event, retval)

def post_RegCreateKeyExA(self, event, retval):
self._print_success(event, retval)

def post_RegCreateKeyExW(self, event, retval):
self.__print_success(event, retval)

Some helper private methods. ..

def _ print_opening_ansi(self, event, tag, pointer):
string = event.get_process () .peek_string(pointer)
tid = event.get_tid()
print "2d: Opening : " % (tid, tag, string)

def _ print_opening_unicode(self, event, tag, pointer):

string = event.get_process () .peek_string(pointer, fUnicode = True)
tid = event.get_tid()
print "2d: Opening : " % (tid, tag, string)

def _ print_success(self, event, retval):
tid = event.get_tid()
if retval:
print " : Success: " % (tid, retval)
else:

print "&%d: Failed!" $ tid

Breakpoints, watches and hooks

A Debug object provides a small set of methods to set breakpoints, watches and hooks. These methods in turn use an
underlying, more sophisticated interface that is described at the wiki page HowBreakpointsWork.

The break_at method sets a code breakpoint at the given address. Every time the code is run by any thread, a callback
function is called. This is useful to know when certain parts of the debugee’s code are being run (for example, set it at
the beginning of a function to see how many times it’s called).

The hook_function method sets a code breakpoint at the beginning of a function and allows you to set two callbacks -
one when entering the function and another when returning from it. It works pretty much like the apiHooks property of

1.3. Programming guide 21

WinAppDbg Documentation, Release 1.4

the EventHandler class, only it doesn’t need the function to be exported by a DLL library. It’s useful for intercepting
calls to internal functions of the debugee, if you know where they are.

The watch_variable method sets a hardware breakpoint at the given address. Every time a read or write access is made
to that address, a callback function is called. It’s useful for tracking accesses to a variable (for example, a member of
a C++ object in the heap). It works only on specific threads, to monitor the variable on the entire process you must set
a watch for each thread.

Finally, the watch_buffer method sets a page breakpoint at the given address range. Every time a read or write access
is made to that part of the memory a callback function is called. It’s similar to watch_variable but it works for the
entire process, not just a single thread, and it allows any range to be specified (watch_variable only works for small
address ranges, from 1 to 8 bytes).

Debug objects also allow stalking. Stalking basically means to set one-shot breakpoints - that is, breakpoints that are
automatically disabled after they’re hit for the first time. The term was originally coined by Pedram Amini for his
Process Stalker tool, and this technique is key to differential debugging.

The stalking methods and their equivalents are the following:

Stalking method | Equivalent to
stalk_at break_at
stalk_function hook_function
stalk_variable watch_variable
stalk_buffer watch_buffer

Example #8: setting a breakpoint

Download

This function will be called when our breakpoint is hit
def action_callback(event):

Get the address of the top of the stack
stack = event.get_thread() .get_sp()

Get the return address of the call
address = event.get_process () .read_pointer(stack)

Get the process and thread IDs
pid = event.get_pid()
tid = event.get_tid()

Show a message to the user
message = "kernel32!CreateFileW called from by thread at process
print message % (HexDump.address (address), tid, pid)

n

class MyEventHandler (EventHandler):
def load_dll(self, event):

Get the new module object
module = event.get_module ()

If it’s kernel32.dll...
if module.match_name ("kernel32.d11"):

Get the process ID

22 Chapter 1. Table of Contents

http://pedram.redhive.com/process_stalking_manual/
http://www.zynamics.com/binnavi.html

WinAppDbg Documentation, Release 1.4

pid =

event .get_pid()

Get the address of CreateFile
address module.resolve ("CreateFileW"

Set a breakpoint at CreateFile
event .debug.break_at (pid, address,

)

action_callback)

If you use stalk_at instead of break_at,

the message will only be shown once
#

event.debug.stalk_at(pid, address,

Example #9: hooking a function

Download

action callback)

This function will be called when the hooked function is entered

def wsprintf(event, ra, 1lpOut, lpFmt):

Get the format string
lpFmt = event.get_process () .peek_string(lpFmt, fUnicode = True)
Get the vararg parameters
count = lpFmt.replace(5%, 7%’).count("%’)
parameters = event.get_thread() .read_stack_dwords(count, offset = 3)
Show a message to the user
showparams = ", ".join([hex(x) for x in parameters])
print "wsprintf(%r, %s);" % (lpFmt, showparams)
class MyEventHandler (EventHandler):
def load_dll(self, event):
Get the new module object
module = event.get_module ()
If it’s user32...
if module.match_name ("user32.d11"):
Get the process ID
pid = event.get_pid()
Get the address of wsprintf
address = module.resolve("wsprintfWw")
Hook the wsprintf function
event .debug.hook_function(pid, address, wsprintf, paramCount = 2)

Use stalk_function instead of hook_function
to be notified only the first time the function is called

#
event.debug.stalk function(pid,

address,

wsprintf, paramCount = 2)

1.3. Programming guide

23

WinAppDbg Documentation, Release 1.4

Example #10: watching a variable

Download

This function will be called when the breakpoint is hit
def entering(event):

Get the thread object
thread = event.get_thread()

Get the thread ID
tid = thread.get_tid()

Get the return address location (the top of the stack)
stack_top = thread.get_sp()

Get the return address and the parameters from the stack
return_address, hModule, lpProcName = thread.read_stack_dwords(3)

Get the string from the process memory
procedure_name = event.get_process () .peek_string(lpProcName)

Show a message to the user

message = "%.08x: GetProcAddress (0x%.08x, %r);"
print message % (return_address, hModule, procedure_name)

Watch the DWORD at the top of the stack

try:
event .debug.stalk_variable(tid, stack_top, 4, returning)
#event.debug.watch_variable(tid, stack_top, 4, returning)

If no more slots are available, set a code breakpoint at the return address

except RuntimeError:
event .debug.stalk_at (event.get_pid(), return_address, returning_ 2)

This function will be called when the variable is accessed
def returning(event):

Get the address of the watched variable
variable_address = event.breakpoint.get_address/()

Stop watching the variable
event .debug.dont_stalk_variable(event.get_tid(), variable_address)

#event .debug.dont_watch _variable(event.get_tid(), variable address)

Get the return address (in the stack)
return_address = event.get_process () .read_uint (variable_address)

Get the return value (in EAX)
return_value = event.get_thread() .get_context () ["Eax’]

Show a message to the user

message = "%.08x: GetProcAddress () returned 0x5s.08x"
print message % (return_address, return_value)

This function will be called if we ran out of hardware breakpoints,

24 Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

and we ended up setting a code breakpoint at the return address
def returning_2(event):

Get the return address from the breakpoint
return_address = event.breakpoint.get_address ()

Remove the code breakpoint
event .debug.dont_stalk_at (event.get_pid(), return_address)

Get the return value (in EAX)
return_value = event.get_thread() .get_context () ['Eax’]

Show a message to the user

message = "$%.08x: GetProcAddress () returned 0x%.08x"
print message % (return_address, return_value)

This event handler sets a breakpoint at kernel32!GetProcAddress
class MyEventHandler (EventHandler):

def load_dll(self, event):

Get the new module object
module = event.get_module ()

If it’s kernel32...
if module.match_name ("kernel32.d11"):

Get the process ID
pid = event.get_pid()

Get the address of GetProcAddress
address = module.resolve("GetProcAddress")

Set a breakpoint at the entry of the GetProcAddress function
event .debug.break_at (pid, address, entering)

Example #11: watching a buffer

Download

class MyHook (object):

Keep record of the buffers we watch
def _ init_ (self):
self.__watched = dict ()

This function will be called when entering the hooked function
def entering(self, event, ra, hModule, lpProcName):

Ignore calls using ordinals intead of names
if lpProcName & OxFFEFF0000 == O:
return

Get the procedure name
procName = event.get_process () .peek_string(lpProcName)

1.3. Programming guide 25

WinAppDbg Documentation, Release 1.4

Ignore calls using an empty string
if not procName:
return

Show a message to the user
print "GetProcAddress(%r);" % procName

Watch the procedure name buffer for access

pid event .get_pid()

address = lpProcName

size len (procName) + 1

action = self.accessed

event .debug.watch_buffer(pid, address, size, action)

Use stalk _buffer instead of watch_buffer to be notified
only of the first access to the buffer.

#
event.debug.stalk _buffer(pid, address, size, action)

Remember the location of the buffer
self.__watched[event.get_tid()] = (address, size)

This function will be called when leaving the hooked function
def leaving(self, event, return_value):

Get the thread ID
tid = thread.get_tid()

Get the buffer location
(address, size) = self._ _watched[tid]

Stop watching the buffer
event .debug.dont_watch_buffer (event.get_pid(), address, size)
#event .debug.dont_stalk buffer(event.get_pid(), address, size)

Forget the buffer location
del self._ watched[tid]
This function will be called every time the procedure name buffer is accessed

def accessed(self, event):

Show the user where we’re running
thread = event.get_thread()

pc = thread.get_pc()
code = thread.disassemble(pc, 0x10) [O0]
print "0x%.08x: %s" % (code[0], code[2].lower())

class MyEventHandler (EventHandler):

Called guard page exceptions NOT raised by our breakpoints
def guard_page(self, event):
print event.get_exception_name ()

Called on DLL load events
def load_dll(self, event):

26 Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

Get the new module object
module = event.get_module ()

If it’s kernel32...
if module.match_name ("kernel32.d11"):

Get the process ID
pid = event.get_pid()

Get the address of wsprintf
address = module.resolve("GetProcAddress")

Hook the wsprintf function
event .debug.hook_function(pid, address, MyHook () .entering, paramCount =

Labels

2

Labels are used to represent memory locations in a more user-friendly way than simply using their addresses. This is
useful to provide a better user interface, both for input and output. Also, labels can be useful when DLL libraries in a

debugee are relocated on each run - memory addresses change every time, but labels don’t.

For example, the label “kernel32 CreateFileA” always points to the CreateFileA function of the kernel32.dll library.

The actual memory address, on the other hand, may change across Windows versions.
In addition to exported functions, debugging symbols are used whenever possible.

A complete explanation on how labels work can be found at the wiki page HowLabelsWork.

Example #12: getting the label for a given memory address

Download

from winappdbg import System, Process
def print_label(pid, address):

Request debug privileges
System.request_debug_privileges ()

Instance a Process object
process = Process(pid)

Lookup it’s modules
process.scan_modules ()

Resolve the requested label address
label = process.get_label_at_address(address)

Print the label
print " == 0x " % (label, address)

Example #13: resolving a label back into a memory address

Download

1.3. Programming guide

27

WinAppDbg Documentation, Release 1.4

from winappdbg import System, Process

def print_label_address(pid, label):

Request debug privileges
System.request_debug_privileges ()

Instance a Process object
process = Process(pid)

Lookup it’s modules
process.scan_modules ()

Resolve the requested label address
address = process.resolve_label(label)

Print the address
print " == 0x " % (label, address)

1.3.3 The Win32 API wrappers

The win32 submodule provides a collection of useful API wrappers for most operations needed by a debugger. This
will allow you to perform any task that the abstraction layer for some reason can’t deal with, or won’t deal with in the
way you need. In most cases you won’t need to resort to this, but it’s important to know it’s there.

Except in some rare cases, the rationale to port the API calls to Python was:

Take Python basic types as input, return Python basic types as output.

Functions that in C take an output pointer and a size as input, in Python take neither and return the output data
directly (the wrapper takes care of allocating the memory buffers).

Functions that in C have to be called twice (first to get the buffer size, then to get the data) in Python only have
to be called once (returns the data directly).

Functions in C with more than one output pointer return tuples of data in Python.

Functions in C that return an error condition, raise a Python exception (WindowsError) on error and return the
data on success.

Default parameter values were added when possible. The default for all optional pointers is NULL. The default
flags are usually the ones that provide all possible access (for example, the default flags value for GetThread-
Context is CONTEXT_ALL)

For APIs with ANSI and Widechar versions, both versions are wrapped. If at least one parameter is a Unicode
string en Widechar version is called (and all string parameters are converted to Unicode), otherwise the ANSI
version is called. Either ANSI or Widechar versions can be used explicitly (for example, CreateFile can be
called as CreateFileA or CreateFileW).

Example #1: finding a DLL in the search path

Download

import sys

from winappdbg import win32

fullpath, basename = win32.SearchPath(None, sys.argv[l], ’.dll’”)

28

Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

print "Full path: %s"
print "Base name: ¢s"

fullpath
basename

Example #2: Killing a process by attaching to it

Download

import sys
import thread

from winappdbg import win32
def processKiller (dwProcessId) :

Attach to the process
win32.DebugActiveProcess (dwProcessId)

Quit the current thread
thread.exit ()

Example #3: enumerating heap blocks using the Toolhelp library
Download

from winappdbg.win32 import =«

def print_heap_blocks(pid):

Determine if we have 32 bit or 64 bit pointers

if sizeof (SIZE_T) == sizeof (DWORD) :
fmt = "2.8x\t%.8x\t%.8x"
hdr = "2-8s\t%-8s\t%¢-8s"
else:
fmt =
hdr =

Print a banner
print "Heaps for process %d:" % pid
print hdr % ("Heap ID", "Address", "Size")

Create a snapshot of the process, only take the heap list
hSnapshot = CreateToolhelp32Snapshot (TH32CS_SNAPHEAPLIST, pid)

Enumerate the heaps
heap = Heap32ListFirst (hSnapshot)
while heap is not None:

For each heap, enumerate the entries
entry = Heap32First(heap.th32ProcessID, heap.th32HeapID)

while entry is not None:

Print the heap id and the entry address and size
print fmt % (entry.th32HeapID, entry.dwAddress, entry.dwBlockSize)

Next entry in the heap

1.3. Programming guide 29

WinAppDbg Documentation, Release 1.4

entry = Heap32Next (entry)

Next heap in the 1list
heap = Heap32ListNext (hSnapshot)

No need to call CloseHandle, the handle is closed automatically when it goes out of scope

return

Example #4: enumerating modules using the Toolhelp library
Download

from winappdbg.win32 import =«

def print_modules(pid):

Determine if we have 32 bit or 64 bit pointers

if sizeof (SIZE_T) == sizeof (DWORD) :
fmt = "2.8x $.8x gs"
hdr = "2-8s $—8s gs"
else:
fmt = "&.16x §.16x $s"
hdr = "%-16s $-16s gs"

Print a banner

print "Modules for process ¢d:" % pid
print

print hdr % ("Address", "Size", "Path")

Create a snapshot of the process, only take the heap 1list
hSnapshot = CreateToolhelp32Snapshot (TH32CS_SNAPMODULE, pid)

Enumerate the modules
module = Module32First (hSnapshot)
while module is not None:
Print the module address, size and pathname
print fmt % (module.modBaseAddr,
module.modBaseSize,

module.szExePath)

Next module in the process
module = Module32Next (hSnapshot)

No need to call CloseHandle, the handle is closed automatically when it goes out of scope
return

Example #5: enumerating device drivers

Download
from winappdbg.win32 import =
def print_drivers(fFullPath = False):

Determine if we have 32 bit or 64 bit pointers

30 Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

if sizeof (SIZE_T) == sizeof (DWORD) :
fmt = "2.08x\tss"
hdr = "%
else:
fmt = "2.¢(
hdr = "%

Get the list of loaded device drivers
ImageBaselist = EnumDeviceDrivers ()

print "Device drivers found: 2¢d" % len(ImageBaselist)
print

print hdr % ("Image base", "File name")

For each device driver...
for ImageBase in ImageBaselist:

Get the device driver filename
if fFullPath:

DriverName = GetDeviceDriverFileName (ImageBase)
else:

DriverName = GetDeviceDriverBaseName (ImageBase)

Print the device driver image base and filename

o

print fmt % (ImageBase, DriverName)

1.3.4 More examples

Set a debugging timeout

Sometimes you’ll want to set a maximum time to debug your target, especially when fuzzing. This is an example on
how to code a custom debugging loop with a timeout. It launches the Windows Calculator and stops when the target
process is closed or after a 5 seconds timeout.

Download

from winappdbg import =«
from time import time

dbg = Debug (bKillOnExit = True)
try:
dbg.execl ("calc.exe’)
maxTime = time () + 5 # 5 seconds timeout
while dbg.get_debugee_count () > 0 and time() < maxTime:
try:
print time ()
event = dbg.wait (1000)
except WindowsError, e:
if win32.winerror(e) in (win32.ERROR_SEM_TIMEOUT, win32.WAIT_TIMEOUT) :
continue
raise
try:
dbg.dispatch (event)
finally:
dbg.cont (event)
finally:
dbg.stop ()

1.3. Programming guide 31

WinAppDbg Documentation, Release 1.4

Dump the memory of a process

This is an example on how to dump the memory map and contents of a process into an SQLite database. A table is
created where each row is a memory region, and the columns are the properties of that region (address, size, mapped
filename, etc.) and it’s data. The data is compressed using zlib to reduce the database size, but simply commenting out
line 160 stores the data in uncompressed form.

Download

import os

import sys

import zlib

import winappdbg

from winappdbg import win32

try:
import sqglite3 as sqglite
except ImportError:
from pysqglite2 import dbapi2 as sglite

Create a snaphot of running processes
system winappdbg.System/()
system.request_debug_privileges ()
system.scan_processes ()

Get all processes that match the requested filenames
for filename in sys.argv[l:]:
for process, pathname in system.find_processes_by_filename (filename) :
pid = process.get_pid()
print "Dumping memory for process ID &d" % pid

Parse the database filename

dbfile = ’2%d.db’ % pid
if os.path.exists (dbfile):
counter = 1
while 1:
dbfile = "35d_%.3d.db’ % (pid, counter)
if not os.path.exists (dbfile):
break

counter += 1
del counter
print "Creating database %s" % dbfile

Connect to the database and get a cursor
database = sqglite.connect (dbfile)
cursor = database.cursor ()

Create the table for the memory map
cursor.execute ("""
CREATE TABLE MemoryMap (
Address INTEGER PRIMARY KEY,
Size INTEGER,
State STRING,
Access STRING,

Type STRING,
File STRING,
Data BINARY

)

nn ll)

32 Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

Get a memory map of the process
memoryMap = process.get_memory_map ()
mappedFilenames = process.get_mapped_filenames (memoryMap)

For each memory block in the map...
for mbi in memoryMap:

Address and size of memory block
BaseAddress = mbi.BaseAddress

RegionSize = mbi.RegionSize

State (free or allocated)

if mbi.State == win32.MEM_RESERVE:
State = "Reserved"

elif mbi.State == win32.MEM_COMMIT:
State = "Commited"

elif mbi.State == win32.MEM_FREE:
State = "Free"

else:
State = "Unknown"

Page protection bits (R/W/X/G)
if mbi.State != win32.MEM_COMMIT:
Protect = ""
else:
if mbi.Protect & win32.PAGE_NOACCESS:
Protect = "-—— "
elif mbi.Protect & win32.PAGE_READONLY:
Protect = "R—— "
elif mbi.Protect & win32.PAGE_READWRITE:
Protect = "RW- "
elif mbi.Protect & win32.PAGE_WRITECOPY:
Protect = "RC- "
elif mbi.Protect & win32.PAGE_EXECUTE:
Protect = "-——-X "
elif mbi.Protect & win32.PAGE_EXECUTE_READ:
Protect = "R-X "
elif mbi.Protect & win32.PAGE_EXECUTE_READWRITE:
Protect = "RWX "
elif mbi.Protect & win32.PAGE_EXECUTE_WRITECOPY:
Protect = "RCX "
else:
Protect = "?27?2 "
if mbi.Protect & win32.PAGE_GUARD:
Protect += "G"
else:
Protect += "-"
if mbi.Protect & win32.PAGE_NOCACHE:
Protect += "N"
else:
Protect += "-"
if mbi.Protect & win32.PAGE_WRITECOMBINE :
Protect += "w"
else:
Protect += "-"

Type (file mapping, executable image, or private memory)
if mbi.Type == win32.MEM_IMAGE:

1.3. Programming guide 33

WinAppDbg Documentation, Release 1.4

Type = "Image"

elif mbi.Type == win32.MEM_MAPPED:
Type = "Mapped"

elif mbi.Type == win32.MEM_PRIVATE:
Type = "Private"

elif mbi.Type == O:
Type ="

else:
Type = "Unknown"

Mapped file name, if any
FileName = mappedFilenames.get (BaseAddress, None)

Read the data contained in the memory block, if any

Data = None
if mbi.has_content () :
print ’'Reading %s-%s’ % (

winappdbg.HexDump.address (BaseAddress),
winappdbg.HexDump.address (BaseAddress + RegionSize)
)
Data = process.read(BaseAddress, RegionSize)
Data = zlib.compress (Data, zlib.Z_BEST_COMPRESSION)
Data = sglite.Binary (Data)

Output a row in the table

cursor.execute (
"INSERT INTO MemoryMap VALUES (2, 2, 2?2, 2?2, 2, 2, ?2)',
(BaseAddress, RegionSize, State, Protect, Type, FileName, Data)

Commit the changes, close the cursor and the database
database.commit ()
cursor.close ()
database.close ()
print "Ok."
print "Done."

Find alphanumeric addresses to jump to

This example will find all memory addresses in a target process that are executable and whose address consists of
alphanumeric characters only. This is useful when exploiting a stack buffer overflow and the input string is limited to
alphanumeric characters only.

Download

from struct import pack
from winappdbg import System, Process, HexDump

Iterator of alphanumeric executable addresses
def iterate_alnum_jump_addresses (memory_snapshot) :

Determine the size of a pointer in the current architecture
if System.bits == 32:
fmt = "L/
elif System.bits == 64:
fmt = Q'
else:

34 Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

raise NotImplementedError

Iterate the memory regions of the target process
for mbi in memory_snapshot:

Discard non executable memory
if not mbi.is_executable () :
continue

Yield each alphanumeric address in this memory region.
address = mbi.BaseAddress
max_address = address + mbi.RegionSize
while address < max_address:

packed = pack (fmt, address)

if packed.isalnum() :

yield address, packed
address = address + 1

Iterate and print alphanumeric executable addresses.
def print_alnum_jump_addresses (pid) :

Request debug privileges so we can inspect the memory of services too.
System.request_debug_privileges()

Suspend the process so there are no malloc’s and free’s while iterating.
process = Process (pid)

process.suspend()

try:

Get an iterator for the target process memory.
iterator process.generate_memory_snapshot ()

Print each executable alphanumeric address.
for address, packed in iterate_alnum_Jjump_addresses (iterator) :
print HexDump.address (address), repr (packed)

Resume the process when we’re done.
This is inside a "finally" block, so if the program is interrupted
for any reason we don’t leave the process suspended.
finally:
process.resume ()

Trace all calls to text drawing in GDI

This example hooks all text drawing functions in GDI and prints the text. It can be useful to extract text messages and

logs from GUI programs.
Download

from winappdbg import Debug, EventHandler, DebugLog
from ctypes import =«

BOOL TextOut (
__in HDC hdc,
__1in 1int nXStart,

1.3. Programming guide

35

WinAppDbg Documentation, Release 1.4

__1in int nYStart,
in LPCTSTR 1pString,
in int cbString

)7

HH H W H

def TextOutA (event, ra, hdc, nXStart, n¥Start, lpString, cbString):
log_ansi (event, "TextOutA", lpString, cbString)

def TextOutW(event, ra, hdc, nXStart, n¥Start, lpString, cbString):
log_wide (event, "TextOutW", lpString, cbString)

BOOL ExtTextout (
__in HDC hdc,

__in int X,

__1in int Y,

__in UINT fuOptions,

in const RECT xlprc,
__1in LPCTSTR lpString,
__in UINT cbCount,

#

in const INT xlpDx

)7
def ExtTextOutA(event, ra, hdc, X, Y, fuOptions, lprc, lpString, cbCount, lpDx):
log_ansi (event, "ExtTextOutA", lpString, cbCount)

def ExtTextOutW(event, ra, hdc, X, Y, fuOptions, lprc, lpString, cbCount, lpDx):
log_wide (event, "ExtTextOutW", lpString, cbCount)

typedef struct _POLYTEXT {
int X;

int v

UINT n;

LPCTSTR lpstr;

UINT uiFlags;

RECT rcl;

int *pdx;

} POLYTEXT, #PPOLYTEXT;
class POLYTEXT (Structure) :

fields = [
("=, c_int),
(rvy’, c_int),
("n’, c_uint),
(" lpstr’, c_void_p),
("uiFlags’, c_uint),
("rcl’, c_uint = 4),
(" pdx’, POINTER (c_int)),

BOOL PolyTextOut (

__in HDC hdc,

__in const POLYTEXT #pptxt,
__in int cStrings

#

)7

def PolyTextOutA (event, ra, hdc, pptxt, cStrings):
process = event.get_process ()
sizeof_polytext = sizeof (POLYTEXT)
while cStrings:
txt = process.read_structure (pptxt, POLYTEXT)

36 Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

log_ansi (event, "PolyTextOutA", txt.lpstr, txt.n)
pptxt = pptxt + sizeof_polytext
cStrings = cStrings - 1

def PolyTextOutW (event, ra, hdc, pptxt, cStrings):

process = event.get_process|()

sizeof_polytext = sizeof (POLYTEXT)

while cStrings:
txt = process.read_structure (pptxt, POLYTEXT)
log_wide (event, "PolyTextOutW", txt.lpstr, txt.n)
pptxt = pptxt + sizeof_polytext
cStrings = cStrings - 1

def log_ansi(event, fn, lpString, nCount):
if lpString and nCount:

if c_int (nCount) .value == —-1:

lpString = event.get_process () .peek_string(lpString, fUnicode = False)
else:

lpString = event.get_process () .peek (lpString, nCount)
print DebuglLog.log_text ("¢s(¢r);" % (fn, lpString))

def log_wide (event, fn, lpString, nCount):
if lpString and nCount:
if c_int (nCount) .value == -1:
lpString = event.get_process () .peek_string(lpString, fUnicode = True)
else:
lpString = event.get_process () .peek (1lpString, nCount * 2)
lpString = unicode (lpString, ’'Ul6’, ’'replace’)

o

print DebuglLog.log_text ("¢s(¢r);" % (fn, lpString))

class MyEventHandler (EventHandler):
def load_dll(self, event):
pid = event.get_pid()
module = event.get_module ()
if module.match_name ("gdi32.d1l1l"):

event .debug.hook_function (pid, module.resolve
event .debug.hook_function (pid, module.resolve

"PolyTextOutA"), PolyTextOutA, paramCot
"PolyTextOutW"), PolyTextOutW, paramCot

event .debug.hook_function (pid, module.resolve ("TextOutA"), TextOutA, paramCot
event .debug.hook_function (pid, module.resolve ("TextOutW"), TextOutW, paramCot
event .debug.hook_function (pid, module.resolve ("ExtTextOutA"), ExtTextOutA, paramCot
event .debug.hook_function (pid, module.resolve ("ExtTextOutW"), ExtTextOutw, paramCot
(
(

def simple_debugger (argv) :

print Debuglog.log_text ("Trace started on %s" % argv[0])
debug = Debug(MyEventHandler ())
try:

debug.execv (argv)
debug. loop ()
finally:
debug.stop ()
print Debuglog.log_text ("Trace stopped on $s" % argv[0])

1.3. Programming guide 37

WinAppDbg Documentation, Release 1.4

Enumerate all named global atoms

Global atoms are WORD numeric values that can be associated to arbitrary strings. They are used primarily for IPC
purposes on Windows. This example shows how to retrieve the string from any atom value.

Download

from winappdbg.win32 import GlobalGetAtomName, MAXINTATOM

print all valid named global atoms to standard output

def print_atoms () :
for x in xrange (0, MAXINTATOM) :

try:
n = GlobalGetAtomName (x)
if n == " "% x: # comment out to print
continue # valid numeric atoms
print "Atom : "% (x, n)
except WindowsError:
pass

1.3.5 Advanced topics

This section contains some more detailed explanations on the internal workings of WinAppDbg and how to perform
more complex tasks with it.

About the unique Crash keys

The key is a tuple of the elements I thought can uniquely identify a crash, at least to some practical extent, so crashes
generated by the same bug will not be included more than once. It’s supposed to be opaque to the user of the class, so
it can easily be changed to reflect different heuristics without breaking existing code.

A more flexible implementation would be to have a set of classes of key objects to choose from, each with a different
heuristic, coded in the comparison operator. For now I’ll leave that for a future version, if the need ever arises.

So far this simple implementation using a tuple has worked well for me. But if you need something different, just
derive from the Crash class and reimplement the key() method.

To disable detection completely, subclass Crash and return self at the key() method.

This is what I chose to include in the key and why:
* Event code and exception code:
Wouldn’t make sense not to include them. :)
* Program counter (EIP/RIP):

The same fault in different places of the code are most likely different bugs. However, different faults in the
same place are not necessarily the same bug, so we can’t rely on this alone.

To avoid problems with DLL relocations, a label is used whenever possible.
 Stack trace (EIP/RIP values only):

This heuristic is actually meant to detect different ways of triggering the same bug, rather than different bugs.
But it’s also useful to detect heap overflows, since all of them will be triggered at the same set of EIPs (where
the heap routines are located) but coming from different parent functions.

To avoid problems with DLL relocations, labels are used whenever possible.

38 Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

* Debug string:

Different debug strings mean most likely different bugs. There’s a catch: if the debug string is generated from
something else (like the value of some variable we don’t care about), this heuristic may fail and give us more
crashes than we really wanted. This is the case for strings generated by heaps in debug mode, as they often
include the heap chunk addresses. If this becomes a problem you can filter out the unwanted debug string events
before passing them to the container.

This is what I chose NOT to include in the key and why:
* Exception address:

Most exceptions caught are page faults, and in that case we’re more interested in the program counter, since
a page fault is generally triggered by corrupting a pointer, and the corrupted value itself isn’t really useful to
uniquely identifying the crash it produces.

Then again I still want to review this heuristic for each specific type of exception for the next version, to make
sure it’s not getting too many false negatives. I didn’t give much thought for scenarios other than page faults
when I thought about this one. :(

¢ First chance or second chance:

Generally second chance exceptions are exactly the same as first chance exceptions, they simply mean the
application didn’t handle them. Depending on the application you’re debugging you could be interested in
logging either first chance or second chance exceptions only, but rarely both.

¢ Process and thread IDs:

One might say, two processes could crash at the same address because of different bugs. But the problem is, the
process and thread IDs are dependent on a particular execution of the target application, and we want to be able
to compare crashes from multiple executions.

» Stack contents and register values:

Both are most likely to contain garbage we’re not interested in, plus many values are dependent on a particular
execution of the application.

By ignoring this we might be missing different ways to trigger the same bug, though.

A closer look at how labels work

Labels are an approximated way of referencing memory locations across different executions of the same process, or
different processes with common modules. They are not meant to be perfectly unique, and some errors may occur
when multiple modules with the same name are loaded, or when module filenames can’t be retrieved.

The following examples assume there is a running process called “calc.exe” and the current user has enough privileges
to debug it. The resolved addresses may vary in your system.

Labels syntax

This is the syntax of labels:

Where all components are optional and blank spaces are ignored.
* The module is a module name as returned by Module.get_name().
¢ The function is a string with an exported function name.

* The ordinal is an integer with an exported function ordinal.

1.3. Programming guide 39

WinAppDbg Documentation, Release 1.4

module + offset !
module ! function + offset
module ! # ordinal + offset

 The offset is an integer number. It may be an offset from the module base address, or the function address. If
not specified, the default is 0.

If debugging symbols are available, they are used automatically in addition to exported functions.

Integer numbers in labels may be expressed in any format supported by HexInput.integer(), but by default they are in
hexadecimal format (for example Ox1234).

If only the module or the function are specified, but not both, the exclamation mark (!) may be omitted in fuzzy mode
(explained later in this document). However, resolving the label may be a little slower, as all module names have to be
checked to resolve the ambiguity.

Generating labels

To create a new label, use the parse_label static method of the Process class:

>>> import winappdbg

>>> winappdbg.Process.parse_label () # no arguments

7 0x0’

>>> winappdbg.Process.parse_label (None, None, None) # empty label

"0x0’

>>> winappdbg.Process.parse_label (None, None, 512) # offset or address

" 0x200"

>>> winappdbg.Process.parse_label ("kernel32") # module base
"kernel32!’

>>> winappdbg.Process.parse_label ("kernel32", "CreateFileA") # exported function...
"kernel32!CreateFileA’

>>> winappdbg.Process.parse_label ("kernel32", 16) # ...by ordinal
"kernel32!#0x10’

>>> winappdbg.Process.parse_label ("kernel32", None, 512) # module base + offset
"kernel32!0x200’

>>> winappdbg.Process.parse_label (None, "CreateFileA") # function in any module...
"!CreateFileA’

>>> winappdbg.Process.parse_label (None, 16) # ...by ordinal

T 1#0x107

>>> winappdbg.Process.parse_label (None, "CreateFileA", 512) # ...plus an offset...
" ICreateFileA+0x200"

>>> winappdbg.Process.parse_label (None, 16, 512) # ...by ordinal

7 1#0x10+0x200"

>>> winappdbg.Process.parse_label ("kernel32", "CreateFileA", 512) # full label...
"kernel32!CreateFileA+0x200’

>>> winappdbg.Process.parse_label ("kernel32", 16, 512) # ...by ordinal

"kernel32!#0x10+0x200"

The get_label_at_address method automatically guesses a good label for any given address in the process.

>>> import winappdbg

>>> aSystem = winappdbg.System/()

>>> aSystem.request_debug_privileges ()
True

>>> aSystem.scan ()

40 Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

>>> aProcess = aSystem.find_processes_by_filename ("calc.exe") [0][0]
>>> aProcess.get_label_at_address (0x7c801a28) # address within kernel32.dl.
"kernel32+0x1a28!’

Splitting labels

To split labels back to their original module, function and offset components there are two modes. The strict mode
allows only labels that have been generated with parse_label. The fuzzy mode has a more flexible syntax, and supports
some notation abuses that can only be resolved by a live Process instance.

The split_label method will automatically use the strict mode when called as a static method, and the fuzzy mode
when called as an instance method:

winappdbg.Process.split_method("kernel32!CreateFileA") # static method, using the stric
aProcessInstance.split_method("CreateFileA") # instance method, using the fuz.

The sanitize_label method takes a fuzzy syntax label and converts it to strict syntax. This is useful when reading
labels from user input and storing them for later use, when the process is no longer being debugged.

Strict syntax mode To explicitly use the strict syntax mode, call the split_label_strict method:

>>> import winappdbg

>>> winappdbg.Process.split_label_strict (None) # empty label

(None, None, None)

>>> winappdbg.Process.split_label_strict (’’) # empty label

(None, None, None)

>>> winappdbg.Process.split_label_strict (' 0x0") # NULL pointer

(None, None, None)

>>> winappdbg.Process.split_label_strict (/' 0x200") # any memory address
(None, None, 512)

>>> winappdbg.Process.split_label_strict (' 0x200 !) # meaningless ! is ignore
(None, None, 512)

>>> winappdbg.Process.split_label_strict (' ! 0x200") # meaningless ! is ignore
(None, None, 512)

>>> winappdbg.Process.split_label_strict (’kernel32 ! 7) # module base
("kernel32’, None, None)

>>> winappdbg.Process.split_label_strict (’kernel32 ! CreateFileA’) # exported function...
("kernel32’, ’CreateFileA’, None)

>>> winappdbg.Process.split_label_strict ('kernel32 ! # 0x10") # ...by ordinal
("kernel32’, 16, None)

>>> winappdbg.Process.split_label_strict ('kernel32 ! 0x200") # base address + offset..
("kernel32’, None, 512)

>>> winappdbg.Process.split_label_strict ('kernel32 + 0x200 ! 7) # ...alternative syntax
("kernel32’, None, 512)

>>> winappdbg.Process.split_label_strict (’ ! CreateFileA’) # function in any module.
(None, ’CreateFileA’, None)

>>> winappdbg.Process.split_label_strict(’ ! # 0x10") # ...by ordinal

(None, 16, None)

>>> winappdbg.Process.split_label_strict(’ ! CreateFileA + 0x200") # ...plus an offset...
(None, ’'CreateFileA’, 512)

>>> winappdbg.Process.split_label_strict (' ! # 0x10 + 0x200") # ...by ordinal

(None, 16, 512)

>>> winappdbg.Process.split_label_ strict ('kernel32 ! CreateFileA + 0x2007) # full label...
("kernel32’, ’'CreateFileA’, 512)

>>> winappdbg.Process.split_label_strict (’kernel32 ! # 0x10 + 0x200") # ...by ordinal
("kernel32’, 16, 512)

1.3. Programming guide 41

WinAppDbg Documentation, Release 1.4

Fuzzy syntax mode To explicitly use the fuzzy syntax mode, call the split_label_fuzzy method:

>>> import winappdbg
>>> aSystem = winappdbg.System()
>>> aSystem.request_debug_privileges()

True

>>> aSystem.scan ()

>>> aProcess = aSystem.find_processes_by_filename ("calc.exe") [0][0]

>>> aProcess.split_label_fuzzy("kernel32") # allows no ! sign
("kernel32’, None, None)

>>> aProcess.split_label_ fuzzy("kernel32.d1l1") # strips the derfault extensi
("kernel32’, None, None)

>>> aProcess.split_label_fuzzy("CreateFileA") # can tell a module from a fi
(None, ’CreateFileA’, None)

>>> aProcess.split_label_strict("0x7c800000") # strict mode can’t tell bas
(None, None, 2088763392)

>>> aProcess.split_label_ fuzzy("0x7c800000") # fuzzy mode can tell base a
("kernel32’, None, None)

>>> aProcess.split_label_fuzzy("0x7c800000 + 6696") # base address + offset
("kernel32’, None, 6696)

>>> agProcess.split_label_fuzzy ("0x7c801a28") # any memory address
("kernel32’, None, 6696)

>>> aProcess.split_label_ fuzzy("0x200") # address outside of any loa

(None, None, 512)

Resolving labels

The resolve_label method allows you to get the actual memory address the label points at the given process. If the
module is not loaded or the function is not exported, the method fails with an exception.

>>> import winappdbg
>>> aSystem = winappdbg.System/()
>>> aSystem.request_debug_privileges ()

True

>>> aSystem.scan ()

>>> aProcess = aSystem.find_processes_by_filename ("calc.exe") [0][0]

>>> agProcess.resolve_label ("kernel32") # module base

2088763392

>>> aProcess.resolve_label ("KERNEL32") # module names are case 1lnse
2088763392

>>> aProcess.resolve_label ("kernel32.dl11")

2088763392

>>> gProcess.resolve_label("kernel32 + 0x200") # module + offset
2088763904

>>> agProcess.resolve_label ("kernel32 | CreateFileA")

2088770088

>>> aProcess.resolve_label ("CreateFileA") # all loaded modules are sea.
2088770088

>>> gProcess.resolve_label(" # 16") # function ordinal
2090010350

>>> aProcess.resolve_label(" # 0x10") # function ordinal in hexa
2090010350

>>> agProcess.resolve_label("kernel32 ! CreateFileA + 0x200")

2088770600

>>> gProcess.resolve_label ("CreatelFileA + 0x200")

2088770600

>>> aProcess.resolve_label ("0x7c800000™) # module base address

42 Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

2088763392
>>> gProcess.resolve_label("0x7¢c800000 ! CreateFileA")
2088770088

A closer look at how breakpoints work

This wiki page aims at giving a more detailed explanation on how breakpoints really work, behind the simplified
break_at, stalk_at, watch_variable and watch_buffer interface provided by the Debug objects. With this you can
fine-tune the use of breakpoints in your programs.

Breakpoint types

Debug objects support three kinds of breakpoints: code breakpoints, page breakpoints and hardware breakpoints.
Each kind of breakpoint causes an exception to be raised in the debugee. These exceptions are caught and handled
automatically by the debugger.

Breakpoints have to be defined first and enabled later. The rationale behind this is that you can define as many
breakpoints as you want, and then switch them on and off as you need to without having to delete them. This leads to
a more efficient use of resources, and is consistent with what one expects of debuggers.

Code breakpoints are defined by the define_code_breakpoint method, enabled by the enable_code_breakpoint
method. You can guess what are the methods to disable and erase code breakpoints. :)

Similarly, page breakpoints are defined by define_page_breakpoint, hardware breakpoints are defined by de-
fine_hardware_breakpoint, and so on.

Code breakpoints Code breakpoints are implemented by inserting an int3 instruction (xCC) at the address specified.
When a thread tries to execute this instruction, a breakpoint exception is generated. It’s global to the process because
it overwrites the code to break at.

When hit, code breakpoints trigger a breakpoint event at your event handler.

Let’s look at the signature of define_code_breakpoint:

def define_code_breakpoint (self, dwProcessId, address, condition
action = None) :

True,

Where dwProcessld is the Id of the process where we want to set the breakpoint and address is the location of the
breakpoint in the process memory. The other two parameters are optional and will be explained later.

Page breakpoints Page breakpoints are implemented by changing the access permissions of a given memory page.
This causes a guard page exception to be generated when the given page is accessed anywhere in the code of the
process.

When hit, page breakpoints trigger a guard_page event at your event handler.

Let’s see the signature of define_page_breakpoint:

def define_page_breakpoint (self, dwProcessId, address, pages = 1,
condition = True,
action = None):

Where dwProcessld is the same. But now address needs to be page-aligned and pages is the number of pages
covered by the breakpoint. This is because VirtualProtectEx() works only with entire pages, you can’t change the
access permissions on individual bytes.

1.3. Programming guide 43

http://en.wikipedia.org/wiki/INT_(x86_instruction)#INT_3
http://msdn.microsoft.com/en-us/library/aa366899(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa366899(VS.85).aspx

WinAppDbg Documentation, Release 1.4

Hardware breakpoints Hardware breakpoints are implemented by writing to the debug registers (DR0-DR7) of a
given thread, causing a single step exception to be generated when the given address is accessed anywhere in the code
for that thread only. It’s important to remember the debug registers have different values for each thread, so this can’t
be done global to the process (you can set the same breakpoint in all the threads, though).

When hit, hardware breakpoints trigger a single_step event at your event handler.
The signature of define_hardware_breakpoint is this:

def define_hardware_breakpoint (self, dwThreadId, address,
triggerFlag = BP_BREAK_ON_ACCESS,

sizeFlag = BP_WATCH_DWORD,
condition = True,
action = None):

Seems a little more complicated than the others. :)

The first difference we see is the dwProcessld parameter has been replaced by dwThreadlId. This is because hardware
breakpoints are only applicable to single threads, not to the entire process.

The address is any address in the process memory, even if it’s unmapped. This can be useful to set breakpoints on
DLL libraries before they are loaded (as long as they don’t get relocated).

The triggerFlag parameter is used to specify exactly what event will trigger this breakpoint. There are four constants
available:

Constant Meaning
Debug.**BP_BREAK_ON_EXECUTION** | Break when executing on address.
Debug.**BP_BREAK_ON_WRITE** Break when writing to address.
Debug.**BP_BREAK_ON_ACCESS** Break when reading or writing to address.
Debug.**BP_BREAK_ON_IO_ACCESS** (Not currently used by today’s hardware.)

The sizeFlag parameter says how large is the memory region to watch. There are again four constants:

Constant Meaning

Debug.**BP_WATCH_BYTE** Applies to 1 byte from address.
Debug.**BP_WATCH_WORD** Applies to 2 bytes (a word) from address.
Debug.**BP_WATCH_DWORD** | Applies to 4 bytes (a double word) from address.
Debug.**BP_WATCH_QWORD#** | Applies to 8 bytes (a quad word) from address.

Since x86 processors only have enough room for four hardware breakpoints in the debug registers, you can only
enable four of them at a time for a single thread. You can define as many as you want, though, provided you only
keep a maximum of four enabled breakpoints per thread at any time.

Conditional and automatic breakpoints

We have seen above that all the methods to define breakpoins have the optional parameters condition and action. But
what do they mean?

The condition parameter The condition parameter determines if the breakpoint is conditional or unconditional.

If it’s set to True (the default value) the breakpoint is unconditional. Unconditional breakpoints always call the
corresponding method of the event handler.

And if it’s set to a function (or any other callable Python object), the breakpoint is conditional. Conditional break-
points, when hit, call the condition callback. If this callback returns True the event handler method is also called,
otherwise it isn’t. This allows you to set breakpoints that will only trigger an event under specific conditions (for
example, only stop the execution when EAX equals Ox/00, ignore it otherwise).

44 Chapter 1. Table of Contents

http://en.wikipedia.org/wiki/Debug_register
http://en.wikipedia.org/wiki/Portable_Executable#Relocations

WinAppDbg Documentation, Release 1.4

condition callback
def eax_1is 100 (event) :

aThread = event.get_thread()
aThread.get_context () ["Eax’]

Eax
if Eax == 0x100:

We are interested on this!
return True

False alarm, ignore it...
return False

Will only break when eax is 100 in that process at that address

def break_when_eax_is_100 (debug, pid, address):
debug.define_code_breakpoint (pid, address, condition = eax_is_100)
debug.enable_code_breakpoint (pid, address)

The action parameter The action parameter allows you to set another callback. When not used, the breakpoint is
interactive, meaning when it’s hit (and it’s condition callback returns True) the event handler method is called. But
when it’s used, the breakpoint is automatic, and that means this callback is called instead of the event handler method.

Automatic breakpoints are useful for setting tasks to be done “behind the back” of the event handler, so they don’t
have to be treated as special cases by your event handler routines.

action callback
def change_eax_value (event) :

Get the thread that hit the breakpoint
aThread = event.get_process|()

Set a new value for the EAX register
aThread.set_register ('Eax’, 0xBAADF0OD)

Will automatically change the return value of the function

def auto_change_return_value (debug, pid, address):
’address’ must be the location of the ’ret’ instruction
debug.define_code_breakpoint (pid, address, action = change_eax_value)
debug.enable_code_breakpoint (pid, address)

Breakpoints can be both conditional and automatic. Here is another example reusing the code above:

Will automatically change the return value of the function,
but only when the original value was 0x100
def conditionally_change_return_value (debug, pid, address):
’address’ must be the location of the ’ret’ instruction
debug.define_code_breakpoint (pid, address, condition = eax_is_100,
action = change_eax_value)
debug.enable_code_breakpoint (pid, address)

One-shot breakpoints

Breakpoints of all types can also be one-shot. This means they’re automatically disabled after being hit. This is useful
for one time events, for example a debugger might want to set a one-shot breakpoint at the next instruction for tracing.

1.3. Programming guide 45

WinAppDbg Documentation, Release 1.4

You could also set one-shot breakpoints to do code coverage, where multiple executions of the same code are not
relevant.

Note that one-shot breakpoints are only disabled, not deleted, so you can enable them again. Any disabled breakpoint
can be enabled again, as a normal breakpoint or as one-shot, independently of how it’s been used before.

To set one-shot breakpoints, after defining them use one of the enable_one_shot_code_breakpoint, en-
able_one_shot_page_breakpoint or enable_one_shot_hardware_breakpoint methods to enable it.

Will automatically change the return value of the function,

but only when the original value was 0x100,

and only the next time the function is called

def conditionally_change_return_value (debug, pid, address):
’7address’ must be the location of the ’“ret’ instruction
debug.define_code_breakpoint (pid, address, condition = eax_is_100,

action = change_eax_value)

debug.enable_one_shot_code_breakpoint (pid, address)

Batch operations on breakpoints

The following methods are provided for working on all breakpoints at once:

Method Description

enable_all_breakpoints Enables all disabled breakpoints in all processes.
enable_one_shot_all_breakpoints | Enables for one shot all disabled breakpoints in all processes.
disable_all_breakpoints Disables all breakpoints in all processes.
erase_all_breakpoints Erases all breakpoints in all processes.

These methods work with all breakpoints of a single process:

Method Description

enable_process_breakpoints Enables all disabled breakpoints for the given process.
en- Enables for one shot all disabled breakpoints for the given
able_one_shot_process_breakpoints | process.

disable_process_breakpoints Disables all breakpoints for the given process.
erase_process_breakpoints Erases all breakpoints for the given process.

Accessing the breakpoint objects

For even more fine-tuning you might also want to access the Breakpoint objects directly. The get_code_breakpoint
method retrieves a code breakpoint in a process, get_page_breakpoint works for page breakpoints in a process, and
get_hardware_breakpoint gets the hardware breakpoint in a thread.

While it’s always safe to request information from a Breakpoint object, it may not be so when modifying it, so be
careful what methods you call. The following methods are safe to call:

46 Chapter 1. Table of Contents

WinAppDbg Documentation, Release 1.4

Method Description

is_disabled If True, breakpoint is disabled.

is_running If True, breakpoint was recently hit.

is_here Returns True if the breakpoint is within the given address range.

get_address Returns the breakpoint location.

get_size Returns the breakpoint size in bytes.

is_conditional If True, the breakpoint is conditional.

get_condition Returns the breakpoint condition parameter.

set_condition Changes the breakpoint condition parameter.

is_automatic If True, the breakpoint is automatic.

get_action Returns the breakpoint action parameter.

set_action Changes the breakpoint action parameter.

get_slot (For hardware breakpoints only) Returns the debug register number used by this
breakpoint, or None if the breakpoint is disabled or running.

get_trigger (For hardware breakpoints only) Returns the trigger parameter.

get_watch (For hardware breakpoints only) Returns the watch parameter.

get_size_in_pages| (For page breakpoints only) Get the number of pages covered by the breakpoint.

align_address_to_lpageitstafitr page breakpoints only) Align the given address to the start of the page
it occupies.

align_address_to_|pa$eitemdor page breakpoints only) Align the given address to the end of the page
it occupies.

get_buffer_size_in_ggex:, for page breakpoints only) Get the number of pages in use by the given
buffer.

Listing the breakpoints

Debug objects also allow you to retrieve lists of defined breakpoints, filtered by different criteria. This listing methods
return lists of tuples, and inside this tuples are the Breakpoint objects described earlier.

The following table describes the listing methods and what they return, where pid is a process ID, tid is a thread ID
and bp is a Breakpoint object.

Method Description
get_all_code_breakpoints | Returns all code breakpoints as a list of tuples (pid, bp).
get_all_page_breakpoints | Returns all page breakpoints as a list of tuples (pid, bp).
get_all_hardware_breakpoinReturns all hardware breakpoints as a list of tuples (tid, bp).
get_process_code_breakpointReturns all code breakpoints for the given process.
get_process_page_breakpoinfReturns all page breakpoints for the given process.
get_thread_hardware_breakpintsas all hardware breakpoints for the given thread.
get_process_hardware_breakReintss all hardware breakpoints for each thread in the given process
as a list of tuples (tid, bp).

1.4 Building your own distribution packages

WinAppDbg is released under the BSD license, so as a user you are entitled to create derivative work and re-
distribute it if you wish. A makefile is provided to automatically generate the source distribution package and the
Windows installer, and can also generate the documentation for all the modules using Epydoc.

1.4. Building your own distribution packages 47

WinAppDbg Documentation, Release 1.4

1.4.1 Prerequisites
A Make utility is required to use the makefile. Without it you’re going to have to run each command manually to
generate the documentation and packages. We’re using GNU Make for Windows from the GNU Win32 project.

Tar and BZip2 utilities are required to compress .tar.bz2 files. We’re also using the packages from the GNU Win32
project.

The Epydoc package is required to autogenerate the documentation. [http://www.graphviz.org/ GraphViz] is used by
Epydoc to generate UML graphs for the documentation.

This documentation was generated using Sphinx. The reStructuredText sources are provided with the source code
downloads only.

A Latex compiler is used to generate the documentation in PDF format. We’re currently using MikTex 2.7 on Windows.
The HTML help can be compiled to a .CHM file using Microsoft HTML Help Workshop.

The py2exe package is used to generate standalone binaries for the tools. This step is optional. You can (also option-
ally) compress the executables with UPX.

All of these tools should be present in the PATH environment variable.

Download Make for Windows
Download Tar for Windows
Download BZip2 for Windows
Download Epydoc

Download Sphinx

Download GraphViz

Download MikTex 2.7

Download HTML Help Workshop
Download py2exe

Download UPX

1.4.2 Installer script

Both the source code and Windows installer packages are generated with the Distutils standard package, which is
already shipped with your Python distribution. The setup.py file is the installer script that contains the package
metadata and the list of files to include.

You can find more information on Distutils installer scripts here.

1.4.3 Makefile usage

The Makefile is run using the “make” command. These are the commands supported by our makefile:

Building the project

* make all
Generates the all documentation and builds all the packages.
* make clean

Removes all files and directories created by the other make commands.

48 Chapter 1. Table of Contents

http://gnuwin32.sourceforge.net/
http://gnuwin32.sourceforge.net/
http://gnuwin32.sourceforge.net/
http://epydoc.sourceforge.net/
http://www.graphviz.org/
http://sphinx.pocoo.org/
http://miktex.org/
http://go.microsoft.com/fwlink/?LinkId=154968
http://www.py2exe.org/
http://upx.sourceforge.net/
http://gnuwin32.sourceforge.net/packages/make.htm
http://gnuwin32.sourceforge.net/packages/gtar.htm
http://gnuwin32.sourceforge.net/packages/bzip2.htm
http://sourceforge.net/project/showfiles.php?group_id=32455
http://pypi.python.org/pypi/Sphinx
http://www.graphviz.org/Download.php
http://miktex.org/2.7/setup
http://go.microsoft.com/fwlink/?LinkId=154968
http://sourceforge.net/project/showfiles.php?group_id=15583
http://upx.sourceforge.net/#download
http://docs.python.org/distutils/setupscript.html

WinAppDbg Documentation, Release 1.4

Building each component

¢ make doc

Generates only the documentation, in all supported formats but CHM (the HTML Help Workshop returns an
error condition because of warnings, which would stop the make process).

* make html
Generates only the documentation in HTML format.
¢ make pdf
Generates only the documentation in PDF format.
* make chm
Generates only the documentation in CHM format. Depends on the HTML documentation.
* make dist
Builds only the distribution packages, in all supported formats, for the current platform and architecture.
* make sdist

Builds only the source distribution package (that is, the zip file). This package contains the documentation and
can later be used to install the module by uncompressing it and running setup.py.

¢ make bdist

Builds only the Windows installer package (that is, the exe file) for the current platform and architecture. This
package does not contain the documentation and cannot be manually extracted to search for individual files.

* make py2exe
Builds standalone binaries for the tools, using py2exe. This step is optional.
* make upx

Compresses the executables generated wth py2exe, using UPX. This step is optional.

1.4.4 Directory structure

This is the directory structure expected for the makefile and the install script to work.

Input directories

¢ /examples

This folder contains the example scripts shipped with python-winappdbg. They’re the same examples found in
the project wiki pages. It’s included only in the source distribution package.

¢ /tools

This folder contains the utility scripts shipped with python-winappdbg. It’s included in both the source distribu-
tion package and the Windows installer.

 /winappdbg

This folder contains the winappdbg module files. It’s included in both the source distribution package and the
Windows installer.

1.4. Building your own distribution packages 49

http://www.py2exe.org/
http://upx.sourceforge.net/

WinAppDbg Documentation, Release 1.4

Output directories

e /build

Temporary folder created when building the source distribution and Windows installer. You can safely delete
this.

* /dist

This is where the source distribution and the Windows installer files are stored.
* /dist/py2exe

This is where the standalone binary files are stored. It’s only created when the make py2exe command is run.
 /html

This is where the autogenerated documentation files are stored, in HTML format. If you compile this documen-
tation into a .CHM file it’ll also be stored here.

o /pdf

This is where the autogenerated documentation files are stored, in PDF and PostScript format.

50 Chapter 1. Table of Contents

	Table of Contents
	Getting started
	Tools
	Programming guide
	Building your own distribution packages

